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Content

* Flow regimes in microchannels
o Stratified
o Engulfment

* Mixing by pure diffusion

o Characteristic diffusion time

* Laminar mixing in a shear field
o Mechanism of stretching and rotation
o Aggregate thickness vs time
o Pressure drop, power dissipation, shear rate
o Mixing time prediction
o Comparison with experimental data
o Energetic efficiency of mixing
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Flow in T-mixer (smooth channels)

Stratified flow (Re < ~100)
. * Thick liquid layers
StreamA —— = Slow mass transfer, solely
controlled by diffusion

StreamB —

Engulfment regime (Re > ~100)

e Stretching, thinning,
wrapping (intertwining) of
lamellae

* Higher interfacial area

* Diffusion and convection
contribute to mixing

= Enhanced mass transfer
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Engulfment regime for flow in T-
mixer (smooth channels)
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Engulfment regime
Stretching, thinning, wrapping of lamellae
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Stratified flow in laminar regime:
mixing by molecular dlffu5|on

Characteristic time for diffusion: t;; - = A =

R: half-thickness of aggregate
1
(p+1)(p+3)

p (shape parameter): O for slab, 1 for cylinder, 2 for sphere

A: shape factor A =

Diffusion time in water (D=10° m? s1)

1 mm 5 min
500 pm 1.5 min
100 pm 3s

50 um 0.8s
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Mixing in microstructures

50 um is the low end of industrially feasible processes

Blockage and/or excessive pressure drops might occur at
lower sizes

Flow regime at R > 50 um is generally stratified (Re < 100)
= mixing occurs only by molecular diffusion

Mixing time in liquids at R = 50 um is ~1 s, i.e. far higher
than many fast reactions with characteristic times of
milliseconds

If faster mixing is required: mechanical energy necessary to
reduce blob sizes below 50 um = use of turbulent flow field
would work but would imply rather high power dissipation

In microstructures, Re mostly < 1000 (laminar) but mixing
in laminar a flow field can still be very efficient thanks to the
occurrence of the engulfment regime

Pl and Green Chemistry Mixing in microchannels 7



Laminar mixing in a shear field

Uniform velocity field

Z
N
> > X

No shear urel e No deformation
, Shear flow shear rate: Yy = Z—Z
4\
P’ > X ‘

Shear flow  f4id particle Stretching and folding
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Laminar mixing in a shear field

Shear flow
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Laminar mixing in a shear field

* Objective of mixing:
Produce maximum interfacial area in the minimum
amount of time using the minimum amount of energy

du

* Shearrate: y = e

s() 1

* Thickness vs time in a shear flow: —=

o 14712
* As thickness decreases, concentration gradient
: dc. .
increase, thus mass flux (—D E) increases
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Laminar mixing in a shear field

* Example: aggregate thickness in laminar flow with
mean velocity (u,,) of 0.1 m/s in 500 um microchannel

d = 500 pm > Umax = Zum = 0.2 ms—1

du 2u,, 2-0.1

Y=4z""R ~50010-6
2

= 8005t

= Thickness is 10% of initial value in 10 ms (next slide)

Pl and Green Chemistry Mixing in microchannels 11



Laminar mixing in a shear field

Shear rate (s)
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Key variables in circular
microchannel (laminar flow)

A 32uu
* Pressure drop: =P =22 m
L d?
N o . A Svyu?
 Specific power dissipation: € = 9P _ S
pV R
. 22Uy g
* Meanshearrate:y =—= |—
R 2V
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Pressure drop in rectangular
microchannel (laminar flow)

H
A 32uu
* Pressure drop: — = ¢ 22m -
L d2
- cross—sectional area HW
* Hydraulic diameter: d;, = 4 e = 20w

Geometric factor for rectangular channels:

H
£ = 0.8735 + 0.6265 exp (—3.636W)

Square channels: ¢ = 0.85

Circular channels: ¢ = 1and d;, = d;

QAp 3 32vuz,
pV - d,zl

Specific power dissipation: € =
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Predicted mixing time in
microchannel (laminar flow)

* General equation (diffusion in shear flow, intertwined

lamellae): m
_ 1 . 0.767 8§
O lmix = taiff+shear = Earcsmh( D ) ™ !

e Tubular geometry:

O tdiff+shear = é arcsinh(0.76 - Pe) (Pe - ”’g_d ) Gy = ﬂ)

e Tubular geometry, liquids (Sc>>1)*:

d? 1
O tdiff+shear — Eln(lSZ g PE) = \/—E\Eln(152 g Pe)

O taiffishear = 0.0075 - 7% (water, see next slides)

*for x >~ 5: arcsinh(x) = In(2x)
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Predicted mixing time in
microchannel (water, laminar flow)
1.E+00

Channel diameter (um)
1.E-01 —1000 —500 —200 —100 —50
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Very low mixing time achievable in theory (ms or lower)
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Predicted effect of specific
power dissipation (water)

1.E-02
Channel diameter (um)

—1000
~ 1E-03 200
= 100
‘w0 — 50

£

-§ 1.E-04 0.0075 - 70>

1.E-05
1.E+00 1.E+02 1.E+04 1.E+06

€ (W/kg)

LN

» Minor effect of channel diameter
> tnix(theoretical) = 0.0075 - £70>
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Mixing time, £, (s)

Experimental vs predicted
mixing time in micromixers

Triangular Tangential Caterpillar
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Experimental vs predicted
mixing time in micromixers

» Experimental mixing times are much higher than
theory (~30 times)

» Mixing time depends mainly on g, not geometry
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Some reasons for low mixing
efficiency

* Some time required to mix the 2 flows to obtain
interlaced slabs of A and B (sandwich structure)

* Non-constant shear rate as lamellae are rotated
and do not experience constant deformation rate

* Sometimes lamellae are perpendicular to the
stretching field = striation thickness increases -
reduction in concentration gradient

* Flow field and concentration field don’t match -
mechanical energy wasted to mix regions of pure A
or B with no A/B interface
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Effect of mixing efficiency on
mixing time
* Energetic efficiency of mixing n:

__ fraction of shear rate ef fectively used for mixing

"= total shear rate used for the flow
A S
Ymax JVE/(2V)
d
* taiff+shear = S In(1.52Pe 1)

’321/ ’
¢ tdiff+shear = % In (152 328v3 dZTISC>
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Mixing time prediction with 3%

1.E+00
n =0.03 Channel dlarlnoe(:;r (m)

— 1E01 500
Y 200
£ 100
Eo 1.E-02 0.15 - 8_0'45 —50
X
2 1E-03

1.E-04

1.E+00 1.E+02 1.E+04 1.E+06

€ (W/kg)

Data for channel diameters between 50 and 1000 um with
n = 0.03 : well described by power law tg;¢ ¢4 speqr = 0.15 - €704
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